PREVENTING PRESSURE INJURY IN SPECIAL POPULATIONS
Patients with Medical Devices
With the recognition that the use of medical devices can contribute to pressure injury formation, NPIAP has also developed “Best Practices for Prevention of Medical Device-Related Pressure Injuries (MDRPI)” (EPUAP/NPIAP/PPPIA, 2019; WOCN, 2022a). These include:
- Choose the correct size of medical devices to fit the individual.
- Cushion and protect the skin with dressings in high-risk areas (e.g., nasal bridge).
- Remove or move the device daily to assess skin.
- Avoid placement of devices over sites of prior or existing pressure injury.
- Educate staff and caregivers on correct use of devices and prevention of pressure injury.
- Be aware of edema under devices and the potential for pressure injury.
- Confirm that devices are not placed directly under an individual who is bedridden or immobile.
- Ensure that all members of the patient care team, particularly respiratory therapy, are involved in the plan for reduction of MDRPI.
(WOCN, 2022a; Baranoski & Ayello, 2020)
COMMON QUESTIONS ABOUT PRESSURE INJURIES
Q: Can a patient who sleeps with a breathing machine (BiPAP or CPAP) develop pressure injuries?
A: To work effectively, a breathing machine must fit snugly around the patient’s face. It is usually worn nightly and, depending on the patient’s condition, any time the patient naps. Since breathing machines are normally prescribed for long-term use, there is a risk of pressure injury developing, especially if the straps are worn too tightly. If there are changes in the contours of the patient’s face, resizing the mask may be necessary. The patient or family should discuss these issues with the healthcare provider.
Bariatric Patients
Pressure injury prevention and treatment for bariatric patients is similar to that for nonbariatric patients. However, it is also more challenging for a number of reasons:
- The bariatric patient has increased difficulty moving, either independently or with assistance.
- Increased body weight makes it difficult to view bony prominences and to redistribute pressure.
- Shear and friction are often increased, as the patient is inclined to drag the heels and sacrum when getting out of bed.
- The increased pressure on the bowel and bladder from abdominal weight increases the risk of stress incontinence and diaphoresis, which increases the risk of skin maceration.
- Obesity can compromise respiration due to impaired diaphragmatic movement and lead to subsequent impaired tissue perfusion.
- Pressure injuries develop over bony prominences but may also result from tissue pressure across the buttocks and other areas of high adipose tissue concentration. They may develop in unique locations, such as underneath folds of skin and in locations where devices may have been compressed between skin folds.
- The weight of the pannus (the skin “apron”) can cause pressure injuries to develop in areas such as the hip, thighs, trunk, and torso.
- Skin must be checked for maceration, which is common due to increased diaphoresis.
- Additional positioning devices may be needed to offload the pannus or other large skin folds.
- Infection and delayed healing are more common.
- Deeper tissue layers can impede assessment of cavity wounds and increase the risk of retained wound dressings.
- Equipment must be provided that is the appropriate size, and great care taken that neither the patient nor the staff are injured during the provision of care.
- Bariatric patients appear to be at higher risk for medical device–related pressure injuries.
- Bariatric patients may be more susceptible to deep tissue injury.
(EPUAP/NPIAP/PPPIA, 2019; Baranoski & Ayello, 2020; WOCN, 2022a)
COMMON QUESTIONS ABOUT PRESSURE INJURIES
Q: What can a person with obesity who has an abdominal pannus do to a prevent pressure injury from developing?
A: It is important to gently wash and dry under the pannus daily using a pH-balanced soap or cleanser. Checking for redness or excoriation under the pannus should also be done at least once a day; a hand-held mirror can help with this. Placing a piece of dry cotton material under the pannus can help with moisture control. Wearing tight-fitting clothing or placing synthetic fabrics under the pannus should be avoided. If excoriation develops, a healthcare professional should be consulted in order to determine the best treatment option. It is recommended not to apply lotions or creams under the pannus, as this can cause further excoriation.
Pediatric Patients
There is growing awareness that pressure injuries can be the basis of illness, suffering, and increased cost of care in the pediatric population. A study assessing neonatal ICU patients found that almost 80% of pressure injury present was device-related and that over 90% of MDRPI developed in premature infants. Another study found that 35% of pressure injuries resulted from tracheostomy fixation devices. Pressure injury can occur directly under the tracheostomy tube or at different location under the ties used to secure the tube in place (Delmore et al., 2019; Odom et al., 2020).
Examples of pediatric pressure injury risk assessment tools include the Braden Q and the Pediatric Pressure Ulcer Prediction and Evaluation Tool (PPUPET). The Braden QD scale incorporates the five subsets of the Braden Q scale along with the inclusion of two new subsets: the number of medical devices in use and patient repositionability/skin protection (Curley et al., 2018).
Several factors are associated with pediatric pressure injury development:
- Low birth weight
- Skin texture (e.g., neonatal skin is very thin)
- Incubator temperature and humidity
- Support surface used
- Limited position changes
- Endotracheal intubation
- Incontinence
- Poor tissue perfusion
- Fever
- Larger head proportion to the body, putting the occiput at high risk for pressure injury development
Consider children with medical devices to be at greater risk for pressure injuries. At particularly high risk are those with mechanical ventilation, including tracheostomies, CPAP or BiPAP, and ECMO. Increased temperatures, moisture, and humidity under medical devices and their securement can greatly increase the risk for pressure injury in pediatric patients. Proactive, preventive care should be the primary goal for clinicians, and the use of absorptive dressings under medical devices should be used whenever feasible (Boyar, 2019b).
Risk for MDRPI is also associated with the frequent use of noninvasive pressure ventilation (NIPPV) with pediatric patients in the management of respiratory distress, preservation of lung volume, and enhanced gas exchange. When the securement straps are too loose, there is a high risk for friction and shear injuries caused by the mask rubbing against the patient’s skin. Several studies indicate that when the patient mask leakage amount is between 25 and 55 liters per minute, this provides the optimum effectiveness of NIPPV treatment while preserving patient skin integrity and reducing MDRPI. Further large-scale studies are needed to validate this strategy (Lauderbaugh, 2022).
Many pediatric patients with MDRPI are younger, with premature infants being particularly vulnerable. One of the major reasons for this vulnerability is immature skin, with neonates and infants under 2 years of age at the highest risk level. Neonates have a much thinner stratum corneum, which is the outermost layer of the epidermis, compared to full-term infants. For neonates less than 24 weeks of gestational age, the stratum corneum may be almost completely absent. Another factor that predisposes the premature skin of pediatric patients to pressure injury is the reduced interconnection between the epidermal and dermal layers of the skin. This places the premature skin of neonates at greater risk for damage associated with friction (Delmore et al., 2019).
There is limited information available on healing times for pressure injuries in the pediatric population. One small study that included pediatric patients with pressure injuries at stages 2 to 4 demonstrated an average healing time of 13 days. However, more detailed research needs to be done in this area, taking into consideration the gestational age of the infants and comorbidities. A retrospective study done at Arkansas Children’s Hospital found that the use of a foam dressing and wound-filler silver product during the first 14 days of treatment assisted with healing of tracheostomy-related pressure injuries (Odom et al., 2020).
Immobility-related pressure injury is another major area of concern in the pediatric population. The occipital region is the area most often affected by immobility-related injuries especially in infants from birth to 3 years of age. In infants, the head encompasses a higher percentage of body weight and surface area, and when the pediatric patient is lying supine, the occipital area is the main pressure point and at substantial risk for pressure injury (Bryant & Ayello, 2020).
Currently there are no guidelines proposing the use of a specific type of pressure redistribution surface for patients in neo-intensive care units. A recent study found that most patients in neonatal units are placed on standard mattresses with rolled blankets and soft repositioning devices used to provide pressure off-loading (Razmus, 2021).
As in adults, assessment and monitoring, involvement of the family, nutritional management, support surfaces, and repositioning are important. Wound care strategies and dressing selections must be taken with great care, as baby skin is more permeable and more fragile than adult skin, with the result that products commonly used on adults may not be appropriate for children, such as skin preps, barrier products, antimicrobials, and adhesives. Wound care product choices should be discussed with pediatric specialists (EPUAP/NPIAP/PPPIA, 2019).
COMMON QUESTIONS ABOUT PRESSURE INJURIES
Q: Are children at risk for developing pressure injuries?
A: Yes, children with health conditions that include mobility restrictions or require medical devices are at risk for developing pressure injuries. Frequent skin checks must be performed, with special attention to the skin surfaces under any devices. Parents and guardians of children who are living at home with limited mobility or the use of assistive devices (e.g., splints) should receive education and guidance on skin care from a healthcare professional.
Spinal Cord Injury Patients
The development of pressure injury is of special concern to individuals with spinal cord injury. Pressure injury is the second most frequently occurring medical complication among those with spinal cord injury. Data demonstrate that >95% of adults with spinal cord injury will develop one or more pressure injuries during their lives. Lack of mobility and paralysis are key factors in pressure injury occurrence; the greater the level of paralysis, the greater the risk for the development of pressure injury.
In a study of community-dwelling individuals with spinal cord injury, it was found that those with spinal cord injury at the cervical level had a higher risk of developing a pressure injury compared to those with a spinal cord injury at the lumbar level (Cowan et al., 2019).
In another study of individuals with spinal cord injury living in long-term care facilities, researchers found a higher incidence of pressure injury in patients who were paraplegic than those who were tetraplegic. This may be because patients who are tetraplegic require total care from the facility staff, whereas patients who are paraplegic have more responsibility for making position shifts aimed at relieving pressure, especially when sitting. Another finding was a greater risk for malnutrition in patients with paraplegia compared to those with quadriplegia, perhaps due to a greater calorie use in paraplegic patients due to upper body mobility and potential unaddressed difficulties with independent feeding in this group.
Recommendations include the implementation of greater preventive measures among long-term care patients who are paraplegic to prevent pressure injury. Specific suggestions include closer and more consistent monitoring of this high-risk population, better utilization of assistive technology, and increased patient motivation and education regarding pressure injury prevention (Cowan et al., 2019; Baranoski & Ayello, 2020; WOCN, 2022a).
COMMON QUESTIONS ABOUT PRESSURE INJURIES
Q: What can a person with a spinal cord injury can do to prevent a pressure injury from developing?
A: There are many interventions for a person with a spinal cord injury to minimize their risk for pressure injury, such as good nutrition and pressure relief. The single most important intervention is frequent skin checks. These should be performed at least once or twice a day and more frequently if an area of redness develops.
Pressure Injuries at End of Life
Skin changes or unusual wounds can occur at the end of life and may include deep tissue injury, pressure injuries, or ischemic/mottled wounds. Due to the underlying etiologies, these wounds are generally thought to be unavoidable. For patients at the end of life, it is important to determine the goals of the patient and caregiver(s). Some may wish to achieve healing of the pressure injury, whereas others may desire only palliative care, including reducing pain, odor, drainage, bleeding, and infection, and simplifying dressing changes for comfort. The patient and family must be educated as to realistic expectations for wound healing.
One example of skin changes at the end of life is the Kennedy terminal ulcer. This type of ulcer was first described in 1989. It is located on the sacrococcygeal area, and it appears as a purple, red, blue, or black discoloration of the skin with a butterfly or pear shape that has irregular borders. It has a sudden onset, develops rapidly into a full-thickness wound despite appropriate care, and may precede death in days to weeks (WOCN, 2022a).

Terminal ulcer. (Source: C Melter.)