CARING FOR THE BARIATRIC PATIENT

Healthcare providers face a number of challenges when working with the growing number of obese patients being admitted to hospitals and other healthcare facilities. It is essential that providers understand the physiologic and mobility concerns that may hinder the patient’s capacity to adapt to the stressors of an illness as well as the safety issues for both patients and healthcare workers regarding mobilization.

Respiratory Concerns

Changes in breathing due to obesity include increased respiratory rates, increased oxygen consumption and metabolic requirements, increased work of breathing, and decreased tidal volume. Obesity has a profound effect on the physiology of breathing, leading to pulmonary compromise in a number of ways:

  • Decreases in respiratory compliance due to mechanical factors such as increased weight in the thoracic cage and abdomen
  • Changes in lung compliance related to the increased pulmonary blood volume
  • Disproportionately high percentage of total oxygen consumption for respiratory work, even during quiet breathing, in severely obese patients related to decreased lung volumes
  • Changes in the airway associated with obstructive sleep apnea, obesity hypoventilation syndrome, and respiratory failure
  • Rapid patient oxygen desaturation (hypoxia) due to the decrease in residual volume

Patients with obesity are especially prone to respiratory complications, the most common being obesity-related atelectasis or pneumonia basilar atelectasis, obstructive sleep apnea, and obesity hypoventilation syndrome.

Obesity-related atelectasis or pneumonia basilar atelectasis can occur secondary to the lack of periodic deep breathing. The patient should be encouraged to mobilize and to do deep breathing in a sitting or upright position if possible.

Obstructive sleep apnea (OSA) is very common as obesity seems to increase the passive mechanical pressures, which contributes to upper airway obstruction. This results in repetitive nocturnal oxygen desaturations, fragmented sleep, and excessive daytime somnolence. OSA is commonly treated with continuous positive airway pressure (CPAP) while resting or sleeping.

Hypnotic or narcotic medications should not be administered routinely to obese patients, but if required, patients with OSA must be monitored very closely.

Obesity hypoventilation syndrome (OHS) is characterized by inadequate daytime and/or nighttime ventilation, resulting in oxygen desaturation and elevated carbon dioxide levels. Patients with OHS often develop heart failure. Acute illness or medications can exacerbate OHS, which presents as decreased level of consciousness due to hypercapnia. The most effective acute treatment is bi-level mask ventilation or bi-level positive airway pressure (BPAP).

Patient should be encouraged to practice deep breathing and coughing hourly while awake, and to use an incentive spirometer to prevent pneumonia. Lung sounds should be auscultated regularly, and the patient observed, particularly at night, for decreased oxygenation with pulse oximetry. Respiratory status is also monitored, as well as nail beds for pallor or cyanosis (AHS, 2022).

Circulation Concerns

People who are obese are more than twice as likely to develop both deep vein thrombosis (DVT) and pulmonary embolism (PE) compared to those of normal weight. The risk is even higher in patients under age 40. Obesity causes chronic inflammation and reduced fibrinolysis (breakdown of clots). Chronic inflammation is the result of less nitric oxide, a molecule that protects the endothelium and prevents cells from sticking to the endothelial surface (Taylor, 2021).

It is critical to monitor the patient’s cardiac status, with consistent and accurate vital signs using an appropriate-sized blood pressure cuff for accuracy. Assessment should include accurate weights, monitoring of edema if present, and capillary refill time of fingers and toes. The patient should be assessed regularly for signs of DVT, including redness, tenderness, or warmth of the lower extremities.

Supine positioning can be dangerous for patients with obesity and should be avoided. When the patient is lying flat, the weight of the panniculus may decrease or impair circulation to the lower extremities. Suitable positions include semi-recumbent and reverse Trendelenburg. For those able to ambulate independently or with assistance, it is recommended they walk as tolerated regularly throughout the day.

Anticlotting medications in combination with sequential compression devices should be considered unless contraindicated. The fit of compression stockings is extremely important, as those that are too small can actually create a tourniquet effect, cutting off circulation in the patient’s lower extremities (AHS, 2022).

Skin Integrity

Because of excess body weight, obese patients are predisposed to impairment of skin integrity. Factors that contribute to this include challenges in performing a skin assessment due to difficulty moving and turning the patient, and the presence of comorbid conditions such as diabetes, peripheral vascular disease, malnutrition, and lymphedema. Those with obesity may also be at higher risk for skin breakdown related to increased sweating and moisture, possible impaired mobility, increased pressure, and increased shearing during movement.

Adipose tissue has poor blood supply, which leads to inadequate circulation and decreased oxygenation, making the skin vulnerable to breakdown, slower healing, and risk of infections. Potential venous insufficiency can further impair tissue oxygenation.

Increased body size generates more heat, and the body perspires to maintain normal temperature. Excessive sweating increases risk for bacterial and fungal infections in skin folds, especially under breasts and in groin areas.

Skin fold problems occur when there is skin-to-skin contact in which a warm, moist, and dark environment is created, which then increases the potential for skin breakdown, skin-to-skin friction and shear, irritation, rashes, candidiasis, viral or bacterial infection, and potential pressure injuries.

Focus should be on the elimination of skin-to-skin contact without causing harm to fragile tissue and on keeping skin folds dry. It is helpful to seek the patient’s input, as they have the most experience in dealing with these skin integrity challenges.

Routine examination of all skin surfaces and skin folds should be done daily and increased to every shift if skin is at high risk for breakdown. A validated tool such as the Braden Scale is recommended for skin assessment.

Deep skin folds must be closely monitored, dried thoroughly, and kept open to air as much as possible. Soft, moisture-wicking cloths (such as moisture-wicking textile with antimicrobial silver) between skin folds and antimicrobial and fungus-inhibiting powders are also recommended. The use of cornstarch is not recommended, as is often used in home remedies, since it is a substrate for the growth of yeasts.

Patients with obesity are also at higher risk for pressure injuries, which may include atypical injury, such as that between skin folds, or under the panniculus. Inspect the skin at least daily for signs of pressure injury, especially non-blanchable erythema. When inspecting darkly pigmented skin, look for changes in skin tone, temperature, and tissue consistency compared to skin in other areas of the body.

Turn and reposition frequently while in bed and include repositioning when the patient is up in a chair. Identify any equipment needs such as a trapeze to assist with position changes, as well as pressure-relieving devices (AHS, 2022).

Wound Healing

Would healing depends on the circulatory system to provide oxygen and nutrients to damaged tissue. For patients with obesity, adipose tissue is poorly vascularized, and impaired chest expansion results in potential poor oxygenation. The presence of diabetes can further contribute to delayed healing and infections. All phases of wound healing are dependent on adequate supplies of protein, carbohydrates, vitamins, and minerals. Poor nutritional intake can lead to impaired wound healing (AHS, 2022).

General Hygiene and Toileting

Bariatric patients often require access to walk-in bathing facilities, hand-held showerheads, and appropriate-sized shower chairs. Long-handled, soft-bristled shower brushes allow the patient to reach all body areas. Inspection of the skin is done during bathing to determine care needs and interventions.

More frequent bathing will be required by patients who are prone to odor problems. Odor may be caused by factors including incontinence, skin infections, wounds, skin-on-skin contact, and perspiration. Products to manage moisture and odor can be placed in skin folds.

Toileting concerns for the bariatric patient include access to adequate facilities, limited reach for cleansing, and urgency and incontinence due to tissue compression causing sphincter dysfunction. Appropriate facilities include a toilet riser with handrails for support or a bariatric commode.

All genders are challenged in maintaining genital or perineal care, particularly those who are menstruating. Cleaning and drying the genital area thoroughly and applying barrier products after incontinent episodes are recommended.

Rather than using regular toilet tissue, washcloths or premoistened wipes may be employed. Occupational therapy may be consulted for assistance in obtaining an appropriate tool to assist in reaching areas requiring cleansing (Earlam & Woods, 2020).

Medications

Standard medication dosing is based on data for ideal-weight persons. Understanding of obesity-related changes in drug pharmacology in addition to the overall safety and efficacy is limited, as clinical trials rarely focus specifically on this population.

Due to pharmacokinetic and pharmacodynamic variations associated with obesity, a clinical pharmacist is an essential member of the care team in order to determine correct dosages for the bariatric patient. Differences in the proportion of adipose and lean muscle mass and fluid status can affect absorption, distribution, metabolism, and excretion of drugs.

When administering medications, the following are taken into consideration regarding absorption:

  • Increased rate of absorption of oral medications can occur due to increased gastric emptying.
  • Intravenous access can be difficult.
  • Decreased subcutaneous absorption can occur due to poor subcutaneous blood supply.
  • Intramuscular administration may fail if needles are too short.

When monitoring medications being taken by obese patients, clinicians must also recognize certain differences in patients who are obese.

Distribution is affected by:

  • Ratio of adipose tissue to lean body mass, if lipid-soluble
  • Accumulation of lipophilic drugs in fat stores, requiring increased dose to gain effect
  • Total body water, which may be increased by resuscitation volume
  • Altered protein binding
  • Reduced peak serum concentration

Metabolism is affected by:

  • Critical illness with increase for drug interactions
  • Reduced hepatic blood flow

Elimination is affected by:

  • Increased half-life of lipid-soluble drugs due to accumulation
  • Increased glomerular filtration rates
  • Coexisting disease related to diabetes and hypertension
  • Calculated and measured creatinine clearance, which correlate poorly in obesity and critical illness

Almost any class of drug can be affected by the physiologic changes that occur with obesity, but drugs with narrow therapeutic indexes require the most attention. Antibiotics, chemotherapeutic agents, analgesics, anticoagulants, and anticonvulsants are affected by volume and clearance anomalies. It can therefore be challenging to ensure safe therapeutic concentrations for many drugs in these classes (AHS, 2022; Martin, 2019).

Mobility and Safety

Most patients with obesity are at risk for complications related to immobility, and the patient is more at risk of developing these during a long hospitalization. These may include muscle atrophy, constipation, urinary stasis, DVT, atelectasis, pneumonia, pain management problems, cardiac deconditioning, skin breakdown, and depression.

Maintaining an obese patient’s mobility and safe patient handling pose unique challenges. Patient care areas require equipment designed for obese patients. This includes adequate weight-bearing beds, toilets, specialized chairs, and wheelchairs. Obese patients may require assistance to transfer out of bed and with ambulation. Care may require additional personnel, proper lifting equipment (such as a ceiling-mounted or portable lift to help reduce the risk of injury to staff), and a standard protocol on the methods of care and use of the equipment.

Lack of appropriate equipment, lack of staff knowledge, and shortage of adequate numbers of caregivers may all be barriers to patient mobility, which increases the complications related to immobility. It is recommended that all staff involved with lifting and transferring patients be knowledgeable and competent to safely transfer patients with bariatric care needs. There is also consensus among patient handling professionals that the goal of safe patient-handling programs should be to eliminate all manual lifting whenever possible.

Patients with obesity experience a higher fall rate than the rest of the population. Factors contributing to this include body-weight distribution, gait disturbance, and overestimation of functional status by the patient. It is important to assess the patient’s ambulation status at least once per day or more often as needed, as the ability of a patient to move in bed, get up and get out of bed, and walk about within and outside of the room can vary. It is also essential to support mobility by providing pain management (Ewens et al., 2022; AHS, 2022).