Dementia: Alzheimer’s Disease Patient Care

CONTACT HOURS: 10

BY: 

Judith Swan, MSN, BSN, ADN; Nancy Evans, BS

LEARNING OUTCOME AND OBJECTIVES:  Upon completion of this continuing education course, you will have increased your knowledge of evidence-based guidelines for delivering appropriate therapeutic interventions to persons with Alzheimer’s disease, their family members, and caregivers. Specific learning objectives to address potential knowledge gaps include:

  • Summarize the epidemiological and societal impacts of Alzheimer’s disease.
  • Describe the pathophysiology of Alzheimer’s disease.
  • List risk factors and possible preventive measures for Alzheimer’s disease.
  • Identify the signs, symptoms, and diagnostic steps for the disease.
  • Discuss available pharmacologic and medical therapies.
  • Summarize strategies in the rehabilitation and care of persons with Alzheimer’s disease.
  • Identify interventions in managing problem behaviors.
  • Describe effective support for families and caregivers.
  • Discuss ethical, legal, and end-of-life considerations

TABLE OF CONTENTS

  • Introduction
  • Scope of the Disease
  • What Is Alzheimer’s Disease?
  • Alzheimer’s Disease Signs and Symptoms
  • Diagnosing Alzheimer’s Disease
  • Pharmacologic and Medical Management
  • Rehabilitation for Persons with Dementia
  • Supportive Care for the Person with Alzheimer’s Disease
  • Learning to Manage Problem Behaviors
  • Caring for the Caregivers
  • Ethical and End-Of-Life Considerations
  • Conclusion
  • Resources
  • References

INTRODUCTION


Alzheimer’s disease (AD) is an irreversible, progressive, degenerative disease of the brain that damages and eventually destroys brain cells. This leads to loss of memory and impaired judgment, language, orientation, and executive functioning. Over time, the disease causes behavior and personality changes and eventually loss of physical function. When the individual becomes incapacitated, death is usually caused by complications such as pneumonia, hip fracture, pulmonary embolism, cachexia, or dehydration (Rosenzweig, 2020).

Alzheimer’s disease is one of a group of disorders called dementias, which are brain failures characterized by progressive cognitive and behavioral changes. The five most common forms of dementia are:

  • Alzheimer’s disease
  • Vascular dementia
  • Dementia with Lewy bodies
  • Frontotemporal dementia
  • Mixed dementia (a combination of two or more types)

Other conditions that can result in dementia include:

  • Argyrophilic grain disease (AGD), a common late-stage neurodegenerative disease of old age
  • Creutzfeldt-Jakob disease
  • Huntington’s disease
  • Chronic encephalopathy caused by repeated traumatic brain injury
  • HIV-associated dementia
  • Normal pressure hydrocephalus
  • Parkinson’s disease dementia
    (NIH, 2021a)

Alzheimer’s disease results from a complex pattern of abnormal changes, develops slowly, and gradually worsens. The course of Alzheimer’s and the rate of decline vary from person to person. Alzheimer’s disease can be present for many years before there are clinical signs and symptoms of the disease. On average, a person with Alzheimer’s lives for four to eight years after diagnosis. However, some may live for as many as 20 years.

Alzheimer’s disease is reported as the sixth leading cause of death in the United States; however, studies have found that it is underreported as an underlying cause of death. It is the only cause of death among the top 10 that cannot be prevented, cured, or even slowed, although a controversial new drug, aducanumab, received accelerated FDA approval in 2021 (Alzheimer’s Association, 2020a).

Historical Perspective

“Senile dementia”—the loss of memory and other intellectual faculties that occur in the elderly—was recognized in the time of Hippocrates. In the centuries that followed, this condition was thought to be simply a result of old age, commonly called hardening of the arteries. Diseases of old age, however, were considered unimportant until the second half of the nineteenth century. Prior to this period, people in the United States lived an average of 50 years and few reached the age of greatest risk for Alzheimer’s disease. For this reason, the disease was considered rare, and there was little scientific interest in it.

This changed as the average lifespan increased and Alzheimer’s became more common in people aged 70 and older. During this period of time, advancements in medicine and the ability to look inside the brain gave the medical community the realization that diseases could be the cause of this deterioration.

SIGNIFICANT DEVELOPMENTS IN THE HISTORY OF ALZHEIMER’S DISEASE
(Alzheimer’s Association, 2021a; AACC, 2020)
1906 German psychiatrist Alois Alzheimer first described the pathology of the disease after using staining techniques to identify amyloid plaques and neurofibrillary tangles in the brain associated with the symptoms of senile dementia.
1910 The disease was labeled Alzheimer’s disease by Emil Kraepelin.
1931 After the invention of the electron microscope, it became possible to conduct further study of the brain by viewing actual brain cells, opening the door to research into many areas of brain disorders, including Alzheimer’s disease.
1968 Lawton Instrumental Activities of Daily Living Scale was developed to measure cognitive function. This tool is used to determine how a person is functioning at baseline and to identify improvement or deterioration over time.
1974 The National Institute on Aging was founded.
1976 Alzheimer’s disease was recognized as the most common form of dementia.
1980 The Alzheimer’s Association was founded.
1983 National Alzheimer’s disease month was declared.
1984 Beta-amyloid was identified as forming Alzheimer’s disease’s characteristic plaques, which cause reduced neurological function. A nationwide infrastructure for Alzheimer’s research was established by the National Institute on Aging.
1986 Tau protein was identified as forming Alzheimer’s disease’s characteristic neurofibrillary tangles.
1987 First Alzheimer’s drug trial (tacrine) was begun. The first deterministic Alzheimer’s gene was discovered.
1993 First Alzheimer’s disease risk factor gene was identified, called APOE-e4. First Alzheimer’s drug, tacrine (Cognex), was given approval by the Food and Drug Administration (FDA).
1994 President Reagan announced he had been diagnosed with Alzheimer’s disease. First World Alzheimer’s Day was held.
1995 First transgenic mouse model was announced (human APP genes linked to a rare, inherited form of Alzheimer’s disease inserted into mice).
1996 FDA approved donepezil (Aricept), a cholinesterase inhibitor, for treating all stages of Alzheimer’s disease.
1999 An Alzheimer’s vaccine was found to be successful in mice but caused symptoms of brain autoimmune response in humans.
2000 FDA approved rivastigmine (Exelon), a cholinesterase inhibitor, for treating all stages of Alzheimer’s disease.
2001 FDA approved galantamine (Razadyne), a cholinesterase inhibitor, for treating mild to moderate Alzheimer’s disease.
2003 FDA approved memantine, an N-methyl-D-aspartate (NMDA) antagonist that reduces certain types of brain activity by binding to NMDA receptors and blocking the activity of glutamate, which in Alzheimer’s disease can overstimulate nerve cells and kill them.
2004 The new imaging agent known as Pittsburg Compound B (PiB) was produced to be used with positron emission tomography for early detection of Alzheimer’s. Alzheimer’s Disease Neuroimaging Initiative was begun to share research data worldwide.
2009 An effort was begun to standardized biomarkers for Alzheimer’s disease.
2011 Alzheimer’s disease advanced to become the sixth leading cause of death in the United States and the fifth leading cause of death for persons over the age of 65. Canadian scientists used a technique known as deep brain stimulation (applying electricity to regions of the brain) to reverse Alzheimer’s disease-related memory loss. Annual assessment for cognitive impairment for all Medicare recipients was implemented as part of an annual wellness visit. President Obama signed the National Alzheimer’s Project Act into law, a framework for a national strategic plan.
2012 Scientists at the University College London discovered that specific antibodies that block the function of a related protein (Dkk1) are able to completely suppress the toxic effect of beta-amyloid on synapses. The first major clinical trial for prevention of Alzheimer’s disease was begun.
2013 International Genomics of Alzheimer’s Project researchers identified new genetic risk factors for Alzheimer’s disease.
2014 FDA approved donepezil combined with memantine (Namzaric) for treatment of moderate to severe Alzheimer’s disease. Rates of death caused by Alzheimer’s disease were found to be much higher than reported on death certificates.
2015 A UCLA study identified three distinct subtypes of Alzheimer’s disease: inflammatory, noninflammatory, and cortical (associated with significant zinc deficiency). Research began to determine if they have different underlying causes and respond differentially to potential treatments.
2017 An historic $400 million increase for federal Alzheimer’s disease research funding was signed into law, bringing annual funding to $1.4 billion.
2018 Dementia Care Practice Recommendations were developed to help professional care providers deliver optimal quality, person-centered care.
2021 Aducanumab (Aduhelm), the first therapy to address the underlying biology of Alzheimer’s disease, received accelerated approval by the FDA for limited use.

Scientists continue the search for answers regarding causes, diagnoses, and treatments for Alzheimer’s disease. Many factors contribute to the difficulty of developing effective treatments, including the inability of animal models to reliably predict whether an experimental treatment will be effective in humans, the slow pace of clinical study recruitment, and the relatively long time needed to observe whether an investigational treatment affects disease progression.

As of 2021, many drugs and medical devices are in development that aim to interrupt the disease process by impacting one or more of the brain changes associated with Alzheimer’s. Researchers believe that future treatments will involve a combination of medications or devices aimed at several targets, along with risk reduction strategies similar to current treatments for AIDS and many cancers (Alzheimer’s Association, 2021b).