SPECIAL POPULATIONS AND SITUATIONS
Healthcare must be individualized, but there are some useful general guidelines for working with patients with asthma who belong to certain populations or in specific situations.
Older Adults
It is not uncommon for adults in their 70s or 80s to develop asthma symptoms for the first time. Asthma in older adults is more dangerous, as they are more likely to develop respiratory failure, even during mild attacks. Older patients with mild asthma symptoms can have the same level of breathing difficulty as younger asthma patients experiencing a severe asthma episode. Unlike in younger persons, asthma in the older adult rarely goes into remission. Instead, it is more likely to remain a potentially serious and often disabling disease.
An asthma diagnosis in an older person may be missed because other health problems can mask the disease. Heart disease and emphysema are more common in this age group, and the symptoms of these illnesses can be similar to those of asthma.
Treatment of the older person can be complicated, since many take multiple medications for other problems. Asthma medications can react with these other medications and cause unwanted side effects. Some medications, such as beta blockers, aspirin, some other pain relievers, and anti-inflammatory medicines, can prevent asthma medications from working and may worsen asthma symptoms.
Older patients are more likely than younger ones to have mental confusion or memory problems. This may be the result of normal aging or of an illness such as Alzheimer’s disease. Whatever the cause, such problems can make it hard for certain older patients to follow treatment instructions, especially if the person also takes medication for a variety of other health conditions.
In addition, many asthma medications come in the form of metered dose inhalers, which require a certain degree of manual coordination and dexterity. Older adults are more likely to have difficulty with this type of medication delivery device and thus may not receive the correct dose. Dry powder inhalers or oral medications may be of help in this instance (AAFA, 2021i).
Pregnant Women
Asthma severity during pregnancy is related to asthma severity before pregnancy. Symptoms are more likely to worsen in women with severe asthma. About one third of pregnant women will see their asthma symptoms worsen, and another third will stay the same. The last third will see their asthma symptoms improve. Most women with asthma whose symptoms change in any way during pregnancy will return to their prepregnancy condition within 3 months following delivery.
Asthma exacerbations affect 20%–36% of pregnant asthmatic patients, and these tend to occur during the middle trimester. Gestational asthma is associated with a small increase in pregnancy complications, such as preeclampsia, restricted fetal growth, need for cesarean section, preterm labor, and in extreme instances, fetal demise. Appropriate therapy and good asthma control minimize these complications.
The primary goals of asthma management are unchanged in the setting of pregnancy, and the benefit of active treatment to maintain asthma control and prevent exacerbations outweighs the potential risks of routinely using asthma medications.
Careful follow-up by clinicians experienced in managing asthma is essential, and frequency of follow-up is determined based on the degree of prepregnancy asthma control. It is important to monitor pulmonary function, since diminished pulmonary function during pregnancy is associated with adverse perinatal outcomes.
Spirometry is minimally affected by pregnancy, but other pulmonary function test measurements do change. Total lung capacity may decrease slightly in the last trimester. Residual volume and functional residual capacity normally decrease during pregnancy due to diaphragm elevation from the enlarging uterus. Minute ventilation increases during pregnancy presumed to be due to circulation progesterone levels. Normal blood gases reveal a high PaO2 and a lower PaCO2.
For acute asthma exacerbations that require emergency management or hospitalization, fetal monitoring may be indicated in addition to routine monitoring for asthma. Early consultation with obstetrics service for comanagement is appropriate. Fetal heart rate monitoring is the best choice for determining fetal oxygenation (Mayo Clinic, 2020f; Weinberger & Schatz, 2020).
Infants and Children
Children with asthma are treated much like adults, with inhaled corticosteroids the drug of choice for long-term management. However, the use of high-dose inhaled corticosteroids or systemic (oral) corticosteroids can suppress growth or cause eye problems in children. All children with asthma, regardless of the drugs they are taking, should have their height and weight measured at each office visit.
Medications to treat asthma symptoms in infants and toddlers are often given in liquid form by using a nebulizer with a facemask or an inhaler with a spacer and facemask. Some toddlers and preschoolers are able to use an inhaler with a spacer and mask attachment.
Most babies, toddlers, and preschoolers are treated for asthma by their pediatrician. However, if asthma symptoms are not under control within 3–6 months, or if symptoms are severe and persistent, or if asthma episodes required emergency treatment, it is recommended they be seen by an asthma specialist such as an allergist/immunologist or pulmonologist.
Approximately 50% of children with asthma “outgrow” it once they reach or pass through adolescence, although it may return when they are adults, as their respiratory tract remains sensitive to asthma triggers for life (AAFA, 2021j).
Infants and children are often cared for in childcare centers or family daycare. Parents should be offered information on how to evaluate the childcare setting to avoid asthma triggers and discuss special needs with the care providers. The Asthma and Allergy Foundation of America provides a checklist that can be used by both parents and childcare providers (AAFA, 2021k) (see “Resources” at the end of this course).
Respiratory morbidity is frequent in children with asthma who are younger than 2 years, making evaluation of pulmonary function all the more important in these children. Children with asthma who are older than 5 years are tested using spirometry at each asthma office visit (Rosen & Colin, 2020).
Surgical Patients
Surgical patients with asthma face a higher risk of complications during the perioperative period and an increased risk of various complications postoperatively. Preoperative identification and optimization of patients with asthma before elective surgery are critical in preventing harm, along with a well-planned anesthetic. When patients present for surgery, it is important to determine whether the patient’s asthma is well-controlled or poorly controlled in order to mitigate perioperative complications. Elective surgery is postponed until asthma is well controlled.
Induction of general anesthesia, airway manipulation, and emergence represent the most critical times for perioperative respiratory complications. Ensuring expert personnel are involved is essential. A pediatric anesthesiologist for children has been shown to reduce risk for adverse effects.
In patients with well-controlled asthma, routine mechanical ventilation can be used. However, when airflow obstruction is present, mechanical ventilation becomes more difficult. Allowing ample time for exhalation during mechanical ventilation is critical to avoid dynamic hyperinflation, a feared complication in patients with asthma.
Postoperatively, patients are monitored very closely and returned to their preanesthesia asthma regimen as soon as possible (Kamassai et al., 2020).
Dental Patients
Drugs used to treat asthma, such as beta-2 agonists and inhaled steroids, may promote a higher risk of cavities, dental erosion, periodontal disease, and oral candidiasis. The main mechanism involved is the reduction of salivary flow. Other mechanisms include acid pH in the oral cavity induced by inhaled drugs (particularly dry powder), lifestyle (poor oral hygiene and high consumption of sweet and acidic drinks), GERD, and impairment of local immunity.
Patient management protocols include minimizing stressors, which are the most common cause of asthma exacerbations in the dental office. It is recommended that patients with asthma schedule dental procedures for late morning, when asthma attacks are less likely. The increased risk for an asthma attack (i.e., due to dental anxiety, tooth extraction, allergic reactions) also requires patients to bring their quick-relief medicines to their appointment. Dental treatment can be postponed in the event of an upper respiratory tract infection or exacerbation of asthma.
All dental product manufacturers are required to provide a declaration statement detailing all ingredients and possible allergens in a product. Dental materials that may cause reactions are many, including amalgam, latex, sealant materials, sodium hypochlorite, titanium, nickel-chromium alloy composites, local anesthetics, and impression materials (Metro-Sanchez, 2019; Świątkowska-Bury & Olczak-Kowalczyk, 2020).
Children in the School Setting
Children with asthma are dependent on a team made up of parents, healthcare providers, and school staff. It is important that parents connect with the school nurse and other health services staff to inform them about a child’s asthma. The law requires parental permission to communicate any student health information to a child’s healthcare provider, and it is important for parents to ask about the school’s requirements for such communication.
A child with asthma should have a recent asthma action plan on file at the school and immediate access to quick-relief medication in case of an exacerbation. All 50 states have laws in place allowing students with asthma to carry and self-administer asthma quick-relief inhalers. However, some are still being denied access to these medications during the school day. Fourteen states have laws or state administrative guidelines allowing schools to stock quick-relief medications for students with asthma. Laws vary by state and school district, so it is important for parents to know their child’s school’s policies and requirements.
Parents should include a discussion about their child’s asthma management during any parent/teacher meetings or conferences.
The American Lung Association encourages schools to make a safe environment for children with asthma and provides a toolkit for implementation that includes the following recommendations:
- Know which students are at risk for an asthma emergency.
- Have an asthma action plan on file for each student diagnosed with asthma.
- Ensure students have access to quick-relief medication.
- Ensure good indoor air quality.
- Adopt a tobacco-free policy for both indoor and outdoor environments.
- Offer education to teachers, school staff, parents, and children about asthma.
- Reduce student exposure on high pollution days.
- Provide a full-time registered school nurse all day, every day for each school.
- Assure access to asthma students’ primary care providers.
- Encourage physical education and activity for students whose asthma is well managed.
- Provide options for modified activities.
(ALA, 2020d)
Asthma in the Workplace
It is recommended that patients who are diagnosed with occupational asthma induced by a sensitizing agent be completely and promptly removed from further exposure. Patients with occupational asthma generally have progressive deterioration in lung function if they remain in the same environment.
For workers with mild occupational asthma who have a strong preference for remaining in the workplace, it is recommended that exposure be reduced by engineering controls or respiratory protective devices. However, there is conflicting evidence that this is effective, and “safe” levels of exposure have not been established. For these people, careful ongoing surveillance is advised to detect any further deterioration in lung function.
Workers with severe occupational asthma may be unable to work for several months or longer even after cessation of exposure to the trigger agent. Improvement of occupational asthma after cessation of exposure is most often gradual, reaching a plateau about two years following cessation of exposure. Most patients show incomplete resolution of asthma, airway responsiveness, and inflammation even many years following cessation of exposure.
Asthma patients at work should have an action plan, see a healthcare provider regularly, and take medications as directed. They should avoid tobacco smoke, and if they smoke, they should get help to quit (Lemière & Bernstein, 2019).
Traveling with Asthma
Patients with asthma must take precautions when traveling to avoid triggers most apt to bring about asthma symptoms. For example, when traveling by airplane, bad air quality can be a problem, especially for patients on full-capacity flights. Federal law requires that airlines allow service animals in passenger cabins of planes, which increases the risk for those whose triggers include pet dander. Those with asthma may request being seated away from animals but should be aware that all flights will have pet dander because it comes off people’s clothing.
When traveling by car, it is important to replace air filters and clean the ventilating and air conditioning system. Windows should be rolled up and air conditioning turned on.
Persons with asthma may request nonsmoking, mold-free, and pet-free rooms in hotels or resorts. They can use the air conditioning in the hotel room and keep the windows closed. If allergic to dust mites, they should bring their own pillow and hypoallergic cover.
Patients should be instructed to ensure they have adequate medications for their time away, carry their medications with them wherever they go, know where they can obtain medical attention when necessary, and make certain when traveling abroad that devices such as nebulizers are equipped with an electrical current converter (AAFA, 2021l; Cleveland Clinic, 2021c).