PATIENT ASSESSMENT AND DIAGNOSIS
A patient assessment begins with a medical history and a physical examination. Data is also collected on the patient’s past and current diagnoses. These steps provide a baseline against which any future health changes can be compared. In addition to the history and physical exam, assessment may involve laboratory testing and other diagnostics, including imaging, tumor biopsy, and pulmonary function.
Assessment involves a multidisciplinary team, including primary care providers, nurses, pharmacists, physical therapists (PT), occupational therapists (OT), respiratory therapists (RT), speech and language pathologists (SLP), medical social workers (MSW), and others.
Medical History
The medical history helps to determine the patient’s risk for disease and to diagnose any medical conditions, together with any subsequent laboratory or diagnostic test results. This is performed by a physician, advance practice nurse, resident, physician’s assistant (PA), or medical student (Harding et al., 2020).
The interview setting for taking a history must convey a climate of trust and respect to support effective and therapeutic communication. It is essential that the process be unrushed to ensure that the patient has enough time to remember details. Communication through facial expressions, body language, cultural considerations, and tone of voice are equally important to conduct a successful history-taking (Harding et al., 2020).
In the case of lung cancer, the medical history focuses on pulmonary symptoms, possible risk factors, and causative factors, such as smoking, exposure to other pathogens, and family history.
The type, amount, and duration of smoking is particularly important to note, since any exposure to smoke can be a precursor to lung cancer in the presence of other contributing factors. A history of exposure to smoke includes personal smoking, second-hand smoke, and third-hand smoke. (See also “Smoking” earlier in this course.)
If a lung cancer diagnosis is suspected, it is also important to ask about any possible exposure to carcinogens by inhalation, both environmental and occupational. This may include asbestos, radon, and industrial emissions. (See also “Environmental Exposure” and “Occupational Exposure” earlier in this course.) It is vital to question patients whose occupations may have included such exposures.
Physical Assessment
GENERAL APPEARANCE
When performing a physical examination, the first step is a general observation of the patient, including the patient’s voice, level of consciousness, ability to follow commands, ability to speak clearly and appropriately, and gross motor movements. For a patient with respiratory complaints, the observation of general appearance will include respiratory effort, use of accessory muscles of respiration, any audible respiratory sounds, respiratory rate, signs of fatigue, indications of cyanosis, and general strength.
HEART AND LUNG SOUNDS
Auscultation of the chest will reveal any abnormalities related to compromised airflow, blood flow, or cardiac rate. Electrical activity can be observed on a cardiac monitor. Fremitus (tactile vibrations produced by the voice and transmitted to the chest wall) can be blocked by excessive mucus, a collapsed lung, or a pulmonary lesion, making auscultation more difficult. Auscultation occurs anteriorly and posteriorly.
Neurological Assessment
The neurological assessment includes observing the mental status; determining whether there is normal or abnormal functional of the 12 cranial nerves; and testing motor and sensory function, cerebellar tasks, and reflexes. Medical history for a neurological patient would include rest/sleep patterns, medications, surgeries, neurological history, activity/exercise patterns, elimination, cognition, perception, and coping/stress patterns.
Clinical Manifestations
The clinical manifestations or symptoms of lung cancer can be discrete in early stages and may be mistakenly associated with some other illness. In later stages, lung cancer symptoms are much more pronounced. Understanding the clinical manifestations of lung cancer can help healthcare providers diagnose this serious health condition as soon as possible. Lung cancer is also often asymptomatic in early stages, highlighting the importance of screening when appropriate.
The most common presenting symptoms of all types of lung cancer are:
- A cough that doesn’t go away and gets worse over time
- Coughing up blood (hemoptysis)
- Shortness of breath or wheezing
- Chest pain
- Fatigue
- Loss of appetite or weight loss
- Hoarseness
- Swelling of the neck and face
(MedlinePlus, 2020a)
COUGH
A cough may be the earliest symptom that presents in lung cancer. It may be described as dry and tickling, or one may cough up mucus (called a productive cough). It can occur at any time of day and may have mechanical or environmental triggers. A chronic cough is defined as a cough that lasts for at least eight consecutive weeks, and many people with lung cancer say that they have a cough that “just won’t go away.” In one study of 223 patients with lung cancer, 57% had a cough at the time of diagnosis.
Coughing may be mistaken as resulting from smoking or other previous conditions such as bronchitis or allergies. This may mask the existence of cancer as the causative pathological process. A cough from lung cancer will be persistent, while one from smoking may be worse in the morning, as the lungs have filled with fluid during sleep.
Coughing has complex relationships with other symptoms, including breathlessness and fatigue, forming a symptom cluster (Molassiotis et al., 2017).
BLOOD-TINGED SPUTUM (HEMOPTYSIS)
Approximately 20% of all patients with lung cancer will experience some degree of hemoptysis. In fact, lung cancer accounts for 23% of all cases of hemoptysis.
There are many possible causes of hemoptysis in the presence of lung cancer, including neovascularization in the tumor, exfoliation of the tumor surface, necrosis of the tumor tissue, erosion of the airway into the surrounding vasculature, and bleeding after an airway procedure. The cancerous tissue or malignancy may be causing ruptured blood vessels that color the sputum, particularly in the presence of persistent coughing (Gershman et al., 2019).
SHORTNESS OF BREATH
Dyspnea (shortness of breath) is one of the most common symptoms of lung cancer. The type of symptoms that manifest may be related to the primary cancer type, the site or location within the lungs, and whether there is any metastasis. Dyspnea can be attributed to the malignant tumor compressing part of the airway or to hypoxia.
An early symptom of lung cancer, dyspnea may at first be attributed to overexertion, the aging process, or excess weight. Since there are so many medical diagnoses that include dyspnea as a symptom, the early occurrence of shortness of breath will not necessarily guide the healthcare provider to a diagnosis of lung cancer.
WHEEZING
Wheezing is the sound of air passing through an airway that is insufficiently sized for the volume of air. Compression on the airway or edema may contribute to the sound of wheezing. The sound resembles squeaking or has been described as a musical sound. This is caused by the rapid vibration of the bronchial walls. The sound is often loud enough to be auscultated without the use of a stethoscope.
CHEST PAIN
Chest pain is sometimes caused by pain from pleurisy or pleuritis, an inflammation caused by the tumor. The patient may describe the pain as sharp, dull, constant, intermittent, or becoming more acute with a deep breath. It may be confined to a specific area or felt throughout the chest. The discomfort may also be caused by enlarged lymph nodes or metastasis to the chest wall, the pleura, or the ribs (Healthline, 2021a). (See also “Pleural Involvement” below.)
FATIGUE
Fatigue is an enduring, subjective feeling of tiredness that interferes with daily functioning. Almost all patients with cancer experience fatigue. The most common causes of reversible fatigue in patients with cancer are depression, anemia, hypothyroidism, anxiety, insomnia, dehydration, and infection. It is essential for caregivers to recognize when the patient’s symptoms may be reversible in order to help initiate treatment.
The fatigue may be caused by the cancer itself causing pain or interfering with normal function. One of the most common causes of fatigue in patients with cancer is anemia. It may also be caused by the need for extra energy to promote healing.
NAUSEA / VOMITING / DYSPHAGIA
Nausea, vomiting, and early satiety can be symptoms caused by tumor compression and/or lymphadenopathy compressing the esophagus or diaphragm. Dysphagia (difficulty with swallowing) may occur in patients with lung cancer when there is pharyngeal and/or esophageal discomfort. Enlargement of the mediastinal lymph nodes that is often seen with lung cancer can also cause external compression of the esophagus, leading to dysphagia.
HOARSENESS
Hoarseness may be due to various causes in a patient with lung cancer. It could be due to metastasis with the lung neoplasm as the primary site. The symptom of vomiting can also cause severe irritation of the throat, resulting in hoarseness if the vomiting is frequent enough. Excessive coughing may also cause hoarseness. It can also be caused by compression on the recurrent laryngeal nerve.
NECK AND FACIAL SWELLING
Superior vena cava syndrome (SVCS) may occur from a right-sided lung or lymph node tumor that is compressing the vena cava. This can produce congestive pressure in the smaller veins feeding into the vena cava, leading to edema in the neck and face. This may be accompanied by a bluish-red skin tone, headache, dizziness, and altered consciousness. In extreme cases, SVCS is potentially fatal (ACS, 2021b).
Neck and facial swelling in a patient with lung cancer can also occur secondary to forceful and repeated vomiting.
CARDIAC INVOLVEMENT
Pericardial effusion is an abnormal collection of fluid in the pericardial sac. Fluid can build up slowly in the case of a lung tumor that is putting pressure on the pericardium. A large effusion can also compress the surrounding areas, causing decreased cardiac output. If the effusion causes compression on the lung tissue, cough, dyspnea, orthopnea, and tachypnea may result. Compression on the phrenic nerve may also cause a paralyzed diaphragm and shortness of breath. If the volume of the effusion is sufficient, there may be muffled or distant heart sounds, neck vein distension, peripheral edema, or a pericardial friction rub.
Cardiac tamponade results when a large volume of pericardial effusion causes compression directly on the heart. The onset occurs more slowly in the case of tamponade due to a slow-growing tumor. Mediastinal tumors that compress the heart may also causing dysrhythmias, particularly supraventricular tachycardias. In the case of lung cancer, cardiac dysrhythmias are a rare complication (Zaborowska-Szmit et al., 2020).
PLEURAL INVOLVEMENT
Malignant pleural effusion is the combination of excess pleural fluid combined with cancer cells in the pleural membranes. In the case of lung cancer, the tumor may block the pleural fluid from draining into the lymphatic circulation. The excess pleural fluid and malignant cells can cause pressure, leading to chest pain and shortness of breath (Harding et al., 2020).
There are two layers of pleura: the visceral pleura lines the lungs, and the parietal pleura covers the chest wall. Since there are no nerve endings or sensory pain fibers in the visceral pleura, any inflammation or disruption in the visceral pleura will not cause pain to the patient with lung cancer if that is where the tumor is located. The parietal pleural does have sensory nerve fibers and will be painful if there’s irritation or inflammation at this site.
PSYCHOSOCIAL ISSUES AND LUNG CANCER DIAGNOSIS
- Diagnosis with lung cancer can be a shock to the patient because of its 80%–90% mortality rate.
- Association with smoking or vaping as the cause of lung cancer may lead to the stigmatization of the patient.
- Depression is a common response to a lung cancer diagnosis, often caused by fear of the possible fatal outcome or the harsh effects of chemo- or radiation therapy.
- Anxiety initially interferes with an individual’s ability to understand patient education and to make self-care decisions.
(Bellomo et al., 2019)
Imaging Studies
Imaging studies are an essential aspect of diagnostic testing for lung cancer and used to determine tumor placement, lymph node involvement, and metastasis.
CHEST X-RAY
A chest X-ray is a common first diagnostic test to determine if a patient has lung cancer. The results may initially be normal, as lung tumors are slow growing. The X-ray will eventually show the location and the size of the lesion; any possible lymphatic, rib, or vertebral metastases; and any infiltrates or pleural effusions.
CT SCAN OF THE CHEST
Any lung mass sighted on X-ray will be further evaluated by a CT scan of the chest. This can be done without contrast dye. A more precise view of the location and size of the mass will be made available. Any mediastinal or lymph node enlargement will be more easily evaluated. CT scans of the brain, pelvis, and abdomen may also be performed to assess for metastasis.
OTHER SCANS
Additional scans may be used for diagnosis and/or staging a tumor:
- A positive emission tomography (PET) scan uses an intravenous radioactive dye as a tracer to locate tumors in organs or soft tissue. PET scans are considered 90% accurate compared to 75% accuracy for any other type of scanning.
- A magnetic resonance imagery (MRI) scan uses radio waves and magnets to visualize soft tissue for lung tumors and any metastases, including in the brain or spinal cord.
- Bone scans may be done to check for metastases to any bones or vertebrae if a PET scan or other scan identify any suspicious lytic or bone lesions.
(Harding et al., 2020)
(See also “Types and Staging of Lung Cancer” later in this course.)
Laboratory Findings
At this time, there is no lab test utilized specifically to diagnose lung cancer. However, some common laboratory tests may be included as part of a comprehensive assessment and might alert one to a possible diagnosis of lung cancer.
WHITE BLOOD COUNT (WBC)
A patient with lung cancer will exhibit a high white blood cell count in the presence of concurrent infections such as bronchitis and pneumonia. If systemic therapies (i.e., chemotherapy, immunotherapy, and targeted therapy) or radiation therapy are given as adjunct therapy for a patient with lung cancer, the treatments can affect the bone marrow, where blood cell are formed, causing a low white blood cell count (Healthline, 2021b).
MOLECULAR RESIDUAL DISEASE (MRD) ASSAY
MRD assay results are still considered somewhat experimental and not currently used as the standard of care. MRD measures circulating tumor DNA (ctDNA) that will indicate the presence of cancer cells, even after treatment. The presence of ctDNA is used for asymptomatic cancer screening, early cancer recurrence monitoring, scrutinizing the body’s response to treatment, and for the specific selection of treatments for the cancer (Natera, 2021).
ARTERIAL BLOOD GASES (ABGs)
An ABG test measures the acidity of blood (also referred to as pH) and the blood levels of oxygen (O2) and carbon dioxide (CO2) to determine the functional levels of air exchange. In a patient with lung cancer, ABGs may indicate compromised air exchange due to tumors. ABG results can also be used to determine the effectiveness of lung cancer treatments (CTCA, 2021).
Biopsy
A definitive diagnosis of lung cancer will be made by biopsy of a sample of the tumor tissue. This may be performed by aspiration, a lighted scope, or fluid collection assisted by ultrasound or video camera.
CT-GUIDED NEEDLE ASPIRATION
A needle biopsy may be performed using CT imaging or fluoroscopy to precisely place the needle in the presumed tumor in order to aspirate sufficient fluid or cells to be tested for malignancy. Contrast dye may or may not be used to better visualize the site of the tumor (Cedar Sanai, 2020b).
BRONCHOSCOPY
A biopsy performed by bronchoscopy requires that the patient be sedated. A physician will use a bronchoscope to visualize advancement to the area of the tumor in order to cut a small sample of tissue to send to the laboratory for biopsy. The tissue is either chemically treated or frozen, then sliced to be viewed under a microscope.
MEDIASTINAL EVALUATION
Mediastinoscopy
A mediastinoscopy with biopsy is a performed under general anesthesia and with an endoscopy tube in place to assist respirations. A small incision is made over the sternum and a tube inserted into the mediastinum in order to collect tissue samples to test the area of the mediastinum for cancer cells (MedlinePlus, 2020b).
Endobronchial Ultrasound with Biopsy (EBUS)
An EBUS is a minimally invasive procedure that is performed by aspiration to obtain liquid or tissue from the lung or lymph nodes in order to diagnose and stage lung cancer. An endoscope fitted with ultrasound and a fine-gauge aspiration needle is guided through the patient’s trachea. This procedure is speedy and accurate so that an onsite pathological diagnosis can be performed (USDH, 2021).
VIDEO-ASSISTED THORACOSCOPIC SURGERY (VATS)
A biopsy can also be obtained via video-assisted thoracoscopic surgery. This is a minimally invasive procedure performed under general anesthesia and with intubation to support breathing. One or more small incisions are made in the chest wall in order to insert a tiny camera (thoracoscope). The camera helps the physician to visualize the surrounding area in order to obtain tumor tissue to perform a biopsy to test for lung cancer, mesothelioma, or other chest cancers. The following are possible complications of the procedure:
- Pneumonia
- Bleeding
- Temporary or permanent nerve damage
- Damage to organs near the procedure site
- Anesthesia-related effects
(Mayo Clinic, 2020b)
When compared with a more complex, open operation such as a thoracotomy, VATS usually results in less pain, fewer complications, and a shorter recovery time, resulting in a hospital stay of only two to three days (Mayo Clinic, 2020b).
THORACENTESIS
A thoracentesis can be used to collect fluid to be tested for cancerous cells. A physician inserts a large needle and a catheter between the ribs and into the pleural space between the lung and the chest wall. Pleural fluid is aspirated for testing. Possible risks are pneumothorax, bleeding, or infection. A chest X-ray is ordered to be done immediately after the procedure to ensure there is no pneumothorax.
Pulmonary Function Testing (PFT)
Pulmonary function tests are useful diagnostic tools for lung cancer and its subsequent treatment. For instance, PFT results may indicate whether the lungs are sufficiently healthy for the patient to undergo systemic therapies (i.e., chemotherapy, immunotherapy, and targeted therapy) or radiation treatments. PFTs also establish a baseline of function for comparison prior to the patient starting treatment and subsequently to measure how treatment is affecting the lungs. PFT can also help establish whether the noncancerous lung will function adequately if the other one is removed (Canadian Cancer Society, 2021).
PFTs are noninvasive and are used to measure lung volume, capacity, rates of air flow, and gas exchange. The common method of measurement in pulmonary function tests is spirometry. This is performed by having the patient breathe into a mouthpiece connected to the electronic spirometer device to measure the rate and volume of respirations.
COMPONENTS OF PULMONARY FUNCTION TESTS
- Tidal volume (VT): volume of air inhaled or exhaled during normal breathing
- Minute volume (MV): volume of air exhaled over one minute
- Vital capacity (VC): volume of air that can be exhaled after inhaling as fully as possible
- Forced vital capacity (FVC): amount of air exhaled forcefully and quickly after inhaling as fully as possible
- Functional residual capacity (FRC): volume of air left in lungs after exhaling normally
- Residual volume: volume of air left in the lungs after exhaling as fully as possible
- Total lung capacity: volume of the lungs when filled with air as fully as possible
- Forced expiratory volume (FEV1): volume of air expired during the first second of the FVC test
- Forced expiratory flow (FEF): average rate of flow during the middle half of the FVC test
- Peak expiratory flow rate (PEFR): fastest rate one can force air out of the lungs
(JHM, 2020a)
The most significant finding related to the pulmonary tests is the FEV1/FVC ratio. A ratio less than 70% is considered indicative of substantial airway restriction.
Risks associated with pulmonary function tests are dizziness, shortness of breath, coughing, and asthma symptoms following deep breathing. Exclusion factors are recent eye, chest, or abdominal surgery; chest pain or a recent myocardial infarction; an aneurysm in the chest, abdomen, or brain; active tuberculosis; or any respiratory infection. The following would preclude a patient from having accurate PFTs: poor cooperation or effort, use of bronchodilators prior to testing, use of analgesics, pregnancy, bloated stomach, and fatigue.
Preparations for PFTs include cessation of the aforementioned medications, cessation of smoking for 8–24 hours as tolerated, and eating only a light meal just before the tests (JHM, 2020a).
PATIENT INSTRUCTIONS FOR PFTs
Prior to conducting a PFT, the clinician instructs the patient as follows:
- Empty your bladder before the testing begins.
- Loosen any tight-fitting clothing, jewelry, or other items that may interfere with the test.
- Remove your dentures, if applicable.
- Sit in a chair.
- A soft clip will be put on your nose so that all of your breathing is done through your mouth, not your nose.
- You will be given a sterile mouthpiece attached to a spirometer. Form a tight seal over the mouthpiece with your mouth.
- Follow the clinician’s instructions to inhale and exhale in different ways.
- You will be monitored carefully during the test for dizziness, trouble breathing, or other problems.
- You may be given a bronchodilator drug after certain tests. The tests will then be repeated several minutes later, after the bronchodilator has taken effect.
(URMC, 2020)
LUNG CANCER DIAGNOSIS AND COVID-19
Diagnosis and treatment of patients with lung cancer has become more difficult as a result of the COVID-19 pandemic. This is due in part to the fact that standard physiologic and staging assessments for lung cancer—such as pulmonary function testing (PFTs), endobronchial ultrasound, and bronchoscopy—are droplet-producing and aerosolizing procedures that place healthcare personnel at risk and may therefore reduce the use of such procedures.
Likewise, COVID-19 and lung cancer symptoms are similar (cough, shortness of breath, fatigue, congestion, or pain or pressure in the chest), which may delay the diagnosis of lung cancer.